...的焦点坐标为(0,2),其相邻两条对称轴之间的距离为2
发布网友
发布时间:2024-10-23 23:07
我来回答
共2个回答
热心网友
时间:2024-11-06 11:41
f(x)= Acos^2(ωx+φ)+1 = (A/2) cos(2ωx+2φ) + A/2 + 1 的最大值为3
=> A+1 = 3 => A=2
x=0, y = cos(2φ) + 2 = 2 => cos(2φ) =0 2φ=Kπ/2,K不等于零的整数
其相邻两条对称轴之间的距离为 2 ,周期为4,2π/2ω=4,ω = π/4
可得,f(x)=cos(π/2x+Kπ/2)+2
f(1)+f(2)+f(3)+......+f(2010)=4020+cosπ/2(1+K)+cosπ/2(2+K)+cosπ/2(3+K)+cosπ/2(4+K)+————+cosπ/2(1+K)+cosπ/2(2+K)=4020+cosπ/2(1+K)+cosπ/2(2+K)=4020+0+1或4020-1+0
可得4019和4021
每相邻4项抵消为0。
热心网友
时间:2024-11-06 11:44
f(x)= Acos^2(ωx+φ)+1 = (A/2) cos(2ωx+2φ) + A/2 + 1 的最大值为3
=> A+1 = 3 => A=2
x=0, y = cos(2φ) + 2 = 2 => cos(2φ) =0
其相邻两条对称轴之间的距离为 2 => ω = π/2
=> f(x) = cos(πx+2φ) + 2
f(1) + f(2) + f(3)+ ...... + f(2010)
= -cos(2φ) + cos(2φ) - cos(2φ) + ...... +cos(2φ) + 2 * 100
= 200